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OBJECTIVEdTo create surveillance algorithms to detect diabetes and classify type 1 versus
type 2 diabetes using structured electronic health record (EHR) data.

RESEARCH DESIGNANDMETHODSdWe extracted 4 years of data from the EHR of a
large, multisite, multispecialty ambulatory practice serving;700,000 patients. We flagged possible
cases of diabetes using laboratory test results, diagnosis codes, and prescriptions. We assessed the
sensitivity and positive predictive value of novel combinations of these data to classify type 1 versus
type 2 diabetes among 210 individuals. We applied an optimized algorithm to a live, prospective,
EHR-based surveillance system and reviewed 100 additional cases for validation.

RESULTSdThe diabetes algorithm flagged 43,177 patients. All criteria contributed unique cases:
78% had diabetes diagnosis codes, 66% fulfilled laboratory criteria, and 46% had suggestive pre-
scriptions. The sensitivity and positive predictive value of ICD-9 codes for type 1 diabetes were 26%
(95%CI 12–49) and 94% (83–100) for type 1 codes alone; 90% (81–95) and 57% (33–86) for two or
more type 1 codesplus anynumber of type 2 codes. Anoptimized algorithm incorporating the ratio of
type 1 versus type 2 codes, plasma C-peptide and autoantibody levels, and suggestive prescriptions
flagged 66 of 66 (100% [96–100]) patients with type 1 diabetes. On validation, the optimized
algorithm correctly classified 35 of 36 patients with type 1 diabetes (raw sensitivity, 97% [87–
100], population-weighted sensitivity, 65% [36–100], and positive predictive value, 88% [78–98]).

CONCLUSIONSdAlgorithms applied to EHR data detect more cases of diabetes than claims
codes and reasonably discriminate between type 1 and type 2 diabetes.
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E lectronic health records (EHRs) are
transforming public health surveil-
lance. Systems that can automati-

cally extract, analyze, organize, and
communicate EHR data to public health
agencies increase the breadth, clinical
detail, and timeliness of public health
surveillance (1). EHR-based systems
have rich potential to improve public
health surveillance for diabetes, but little
work has been done thus far to character-
ize the accuracy of raw electronic data for
diabetes surveillance or to create custom
algorithms to accurately distinguish be-
tween type 1 versus type 2 diabetes.

Accurate discrimination between
type 1 and type 2 diabetes is critical given

the different pathophysiology, epidemi-
ology, prevention, management, and
prognosis of these two diseases (2–7).
Traditional public health surveillance sys-
tems either do not distinguish between
these two conditions at all or rely on
self-reports tomake the distinction. In ad-
dition, most existing public health sur-
veys are too small to meaningfully track
low-prevalence conditions such as type 1
in general and type 2 in youth.

We hypothesized that EHR data
could substantially enrich diabetes sur-
veillance by facilitating continuous eval-
uation of very large populations and
leveraging clinical data to distinguish
between type 1 and type 2 diabetes. We

therefore sought to develop EHR-based
surveillance algorithms to detect and
classify type 1 versus type 2 diabetes
and then apply them to a live, prospec-
tive, EHR-based surveillance system to
test their performance.

RESEARCH DESIGN AND
METHODS

Setting and data sources
We used retrospective EHR data from
Atrius Health to develop diabetes surveil-
lance algorithms. Atrius Health is a large,
ambulatory, multisite practice based in
Eastern Massachusetts that provides pri-
mary and specialty care (including pediat-
rics, internalmedicine, and endocrinology)
to .700,000 patients of all ages using a
single consolidated EHR (Epic Systems,
Verona, WI). We extracted encounter
data from the EHR on all patients seen in
the practice between 1 June 2006 and 30
September 2010. The extract included all
diagnosis codes, laboratory test results,
and medication prescriptions. We in-
cluded all patients with at least one en-
counter in the EHR in our analysis.

Detection of diabetes
We created and applied a surveillance
algorithm for diabetes based upon Amer-
ican Diabetes Association (ADA) labora-
tory diagnostic criteria (8), suggestive
medication prescriptions, and ICD-9 codes
(Table 1). We required at least two instan-
ces of ICD-9 code 250.xx in patients with-
out supporting laboratory or prescription
flags.We did not includemetformin in the
algorithm as it may be prescribed for in-
dications other than overt diabetes, such
as polycystic ovarian syndrome and diabe-
tes prevention.

Classification of type 1 versus
type 2
We then began an iterative process to
distinguish between type 1 and type 2
diabetes within the population of patients
flagged by the general diabetes algorithm
in Table 1. We started with a “straw man”
algorithm designed to coarsely divide the
population into pools of patients more
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likely to have type 1 and patients more
likely to have type 2. We began with
this preliminary algorithm in order to
make chart reviews more efficient: type
1 diabetes is so rare compared with type
2 diabetes that random sampling of un-
selected patients yields very few type 1
cases. The straw man algorithm allowed
us to enrich a study population with type
1 diabetes. A case of type 1 was defined as
any patient with ICD-9 250.x1 or 250.x3
on two or more occasions, a current pre-
scription for insulin, and no prescriptions
for oral hypoglycemics at any time. A case
of type 2 was defined as any patient with
ICD-9 250.x0 or 250.x2 on two or more
occasions or a prescription for an oral hy-
poglycemic at any time.

We randomly selected 210 charts
classified by the straw man algorithm for
review: 70 patients classified as type 1, 60
classified as type 2, and 80 left unclassi-
fied by the straw man algorithm. Charts
were reviewed for diabetes using ADA
diagnostic criteria and for diabetes type
(8). We used the following rules to assign
“true” diabetes type (applied sequen-
tially): endocrinologist diagnosis if avail-
able, never on insulin (classify as type 2),
C-peptide negative or diabetes autoanti-
bodies present (classify as type 1), cur-
rently on insulin but prior history of
prolonged treatment with oral hypoglyce-
mic alone (classify as type 2), and nonen-
docrinologist physician diagnosis.

We then created a series of candidate
algorithms based on ICD-9 code frequen-
cies, laboratory test results, and sugges-
tive prescriptions to optimize sensitivity
for chart-confirmed type 1 diabetes while
maintaining high positive predictive val-
ues. Patients who did not fulfill algorithm

criteria for type 1 diabetes were presump-
tively classified as type 2. The study
endocrinologist (E.E.) and internist (M.
K.) created the candidate algorithms
based on clinical knowledge of diabetes
management practices.

We calculated the sensitivity and
positive predictive value of all candidate
algorithms using inverse-probability
weighting to correct for the sampling
strategy. We generated 95% CIs for these
estimates using Monte Carlo simulations.
Specifically, we simulated the number of
true type 1 and type 2 patients among
reviewed charts for each sampling strata
(straw man type 1, straw man type 2, and
straw man unclassified) using multino-
mial distributions and probabilities esti-
mated from the observed data. We
repeated this process 1 million times
and derived 95% CIs from the resulting
2.5 and 97.5 percentiles. Calculations
were executed using SAS version 9.3
(SAS Institute, Cary, NC).

We then created a final algorithm
with optimized sensitivity and positive
predictive value for type 1 diabetes by
combining the candidate algorithms with
the highest positive predictive values
using “or” statements. We focused the op-
timized algorithm on sensitivity to type 1
diabetes because even slight misclassifica-
tion of type 1 patients as type 2 is sub-
stantially magnified after weighting for
the greater size of the type 2 population
and therefore exerts considerable cost in
net sensitivity for type 1.

Validation
We validated the optimized algorithm
within a live, prospective EHR-based sur-
veillance system based in the same practice
that contributed derivation data (1,9). The
algorithm was implemented on 1 Decem-
ber 2011 and retroactively applied to all
data resident in the surveillance system
(1 June 2006 through November 30,
2011).We applied the reference criteria de-
scribed above to 100 hitherto unreviewed
charts: 40 classified by the optimized algo-
rithm as type 1 and 60 classified as type 2.
We calculated the raw and population-
weighted sensitivity and positive predictive
values of the final algorithm.

Comparison of diagnosis
codes alone versus the
optimized algorithm
We compared the sensitivity and positive
predictive value of ICD-9 codes alone
versus the optimized algorithm for de-
tection of type 1 diabetes. We compared

algorithm performance by calculating
95% CIs for the differences in algorithm
performance using multinomial distribu-
tions and Monte Carlo simulations with 1
million repetitions per comparison in a
manner analogous to the method de-
scribed above for calculating 95% CIs
for each candidate algorithm.

RESULTS

Diabetes criteria
The diabetes criteria flagged 43,177 indi-
viduals. Characteristics of the population
and percentages of patients flagged by
each criterion are shown in Table 2. On
review, diabetes was confirmed in 298 of
310 patients (95% positive predictive
value after correcting for sampling). The
12 false-positives included one clinician

Table 1dSurveillance algorithm for
diabetes

Any of the following criteria at any time:

1. Hemoglobin A1c $6.5%
2. Fasting glucose $126 mg/dL
3. Prescription for insulin outside of
pregnancy

4. ICD-9 code 250.xx on two or more
occasions

5. Prescription for one or more of the
following medications:

glyburide, gliclazide, glipizide, glimepiride
pioglitazone, rosiglitazone
repaglinide, nateglinide, meglitinide
sitagliptin
exenatide, pramlintide

Table 2dCharacteristics of patients flagged
by the diabetes surveillance algorithm
described in Table 1

Frequency, n (%)

Age-group
0–19 years 519 (1.2)
20–59 years 18,169 (42)
60–79 years 18,104 (42)
$80 years 6,264 (15)

Sex
Male 20,852 (48)
Female 22,325 (52)

Race/ethnicity
Caucasian 24,746 (57)
African American 5,286 (12)
Asian 1,538 (3.6)
Hispanic 1,268 (2.9)
Unknown or other 10,339 (24)

Method of detection
Hemoglobin A1c $6.5 27,959 (65)
Fasting glucose
$126 mg/dL 1,647 (3.8)

Hemoglobin A1c

$6.5 or fasting
glucose $126 mg/dL 28,492 (66)

Prescription for
insulin outside
of pregnancy 10,275 (24)

Prescription for
an oral hypoglycemic
other than metformin 13,727 (32)

Prescription for
insulin or oral
hypoglycemic other
than metformin 20,013 (46)

ICD-9 250.xx on two
or more occasions 33,876 (78)
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coding error (ICD-9 code 250.xx used for
diabetes screening rather than diagnosis),
two EHR coding errors (oral glucose tol-
erance test 2-hour results miscoded as
fasting glucoses), three algorithm pro-
gramming errors (prescriptions for “insu-
lin syringes” parsed as prescriptions for
insulin), four patients with gestational di-
abetes mellitus (pregnancy not coded as a
discrete data element in the EHR), one
patient with impaired fasting glucose,
and one patient with impaired glucose
tolerance. Among the 298 patients with
chart-confirmed diabetes, 193 had type 2
diabetes, 102 had type 1 diabetes, 1 had
diabetes secondary to recurrent pancreati-
tis, and2 could not be classified (prescribed
insulin but insufficient clinical data in the
EHR to clarify the underlying diagnosis).
Two patients with latent autoimmune di-
abetes in adults were included in the count
of type 1 patients for the sake of simplicity.

Straw man algorithm
The straw man algorithm for classifying
patients as type 1 versus type 2 flagged
1,095 patients as type 1 and 29,410 as
type 2. The remaining patients were not
classified. Type 1 diabetes was confirmed
in 57 of 70 randomly selected type 1
patients (population-weighted sensitiv-
ity, 32%; positive predictive value,
81%). Type 2 diabetes was confirmed in
54 of 60 randomly selected type 2 patients
(population-weighted sensitivity, 76%;
positive predictive value, 90%). Among
80 patients left unclassified by the straw
man algorithm, 7 had type 1 diabetes, 65
had type 2 diabetes, 2 had gestational
diabetes mellitus, 1 was being prescribed
insulin but lacked sufficient data to classify
diabetes type, and 5 did not have diabetes.

Candidate algorithms
Candidate algorithms to distinguish type 1
versus type 2 diabetes are presented in
Table 3 along with their performance rates
and 95% CIs. ICD-9 codes for type 1 di-
abetes performed variably. Requiring an ex-
clusive history of type 1 codes alone had
high positive predictive value for type 1 di-
abetes (94%) but poor sensitivity (26%).
Requiring at least one ICD-9 code for
type 1 with any number of type 2 codes
increased sensitivity to 90% but lowered
positive predictive value to 41%. Requiring
at least two ICD-9 codes for type 1 and any
number of type 2 codes preserved sensitiv-
ity at 90% but increased positive predictive
value to 57%. Seeking a plurality of ICD-9
codes for type 1 diabetes (i.e., ratio of type 1
to type 2 ICD-9 codes .50%) had

intermediate sensitivity (63%) but high
positive predictive value (94%).

Algorithms based on medication pre-
scriptions performed with similar vari-
ability. Presumptively classifying patients
as type 1 based upon a prescription for
insulin had excellent sensitivity (95%)
but poor positive predictive value
(23%), indicating that many type 2 pa-
tients are treated with insulin. A single
false-negative accounted for the less than
perfect sensitivity of insulin prescriptions
for type 1; the patient was prescribed an
insulin pump that was recorded in the
EHR as free text rather than as a struc-
tured prescription. Likewise, classifying
patients without any history of oral hy-
poglycemics as type 1 was very sensitive
(95%) but positive predictive value was
low (15%). Creating an exception for met-
formin increased sensitivity to 98% but
lowered positive predictive value to 11%.
The one medication with reasonable posi-
tive predictive value for type 1was glucagon
(sensitivity, 68%; positive predictive value,
79%). Notably, prescriptions for urine ac-
etone tests had outstanding positive pre-
dictive value for type 1 (sensitivity, 33%;
positive predictive value, 100%).

Combining ICD-9 and medication
criteria increased positive predictive val-
ues. For example, a plurality of ICD-9
codes and a prescription for glucagon
had a sensitivity of 31% but a positive
predictive value of 100%. Similarly, a
plurality of type 1 ICD-9 codes and no
history of oral hypoglycemic prescrip-
tions had a sensitivity of 59% and a
positive predictive value of 99%.

Optimized algorithm
We optimized an algorithm to maximize
sensitivity and positive predictive value
for type 1 diabetes by combining all the
high positive predictive value candidate
algorithms using “or” statements (Table
4). The final algorithm sought patients
with any of the following: a plurality of
ICD-9 codes for type 1 diabetes and a pre-
scription for glucagon, a plurality of ICD-9
codes for type 1 diabetes and a negative
history of prescriptions for oral hypogly-
cemics other than metformin, a negative
plasma C-peptide, positive diabetes auto-
antibody tests, or a prescription for urine
acetone test strips. The final algorithm
flagged 73 patients, including all 66 pa-
tients with type 1 diabetes (raw sensitivity,
100% [95% CI 96–100]; positive predic-
tive value, 90% [82–96]). Correcting
for the sampling strategy yielded a net
population-weighted sensitivity of 100%

(100–100) and a positive predictive value
of 96% (91–99).

Comparison of diagnosis
codes alone versus the
optimized algorithm
The optimized algorithm was more sen-
sitive for type 1 diabetes compared with
surveillance for patients with one or more
type 1 diabetes ICD-9 codes and any
number of type 2 codes (100% vs. 90%,
10% absolute difference [95% CI 4.9–
19]), surveillance for patients with two
or more type 1 diabetes ICD-9 codes
and any number of type 2 codes (100%
vs. 90%, 10% absolute difference [4.9–
19]), and surveillance for patients with
type 1 diabetes ICD-9 codes alone and
no type 2 codes (100% vs. 26%, 74% ab-
solute difference [50–88]). The optimized
algorithm’s positive predictive value for
type 1 diabetes was also high compared
with surveillance for one or more type 1
codes (96% vs. 41%, 55% absolute differ-
ence [31–72]) or two ormore type 1 codes
(96% vs. 57%, 39% absolute difference
[11–62]), but equivalent to surveillance
for patients with type 1 codes alone and
no type 2 codes (96% vs. 94%, 2% abso-
lute difference [24.9 to 7.6]).

Validation and implementation
The final algorithm was applied to a live,
prospective surveillance system for vali-
dation. A total of 100 hitherto unreviewed
charts were evaluated: 40 random charts
flagged as type 1 and 60 random charts
flagged as type 2. Chart review confirmed
35 of 40 patients flagged as type 1. Of the
remaining five, four had type 2 diabetes
and one had gestational diabetes mellitus.
Notably, three of the four false-positive
cases were type 2 patients with a plurality
of type 1 ICD-9 codes; these were all
longstanding type 2 patients managed for
years on insulin alone and labeled as type
1 diabetic in their physicians’ notes.
Among the 60 patients classified as type
2, 57 were confirmed on chart review. Of
the remaining three, one had type 1 dia-
betes, one had gestational diabetes melli-
tus, and one was prescribed insulin but
had insufficiently detailed notes to deter-
mine diabetes type. All told, the final al-
gorithm correctly identified 35 of 36
patients with type 1 diabetes (raw sensi-
tivity, 97% [95% CI 87–100]) and 57 of
61 patients with type 2 diabetes (raw sen-
sitivity, 93% [85–98]). Projecting from
these samples to the full study population
using inverse probability sample weight-
ing yielded net sensitivity and positive
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predictive values of 65% (95% CI 36–100)
and 88% (78–98) for type 1 diabetes, and
net sensitivity and positive predictive val-
ues of 100% (99–100) and 95% (88–100)
for type 2 diabetes. Figure 1 depicts a heat
map of the prevalence of type 2 diabetes
by zip code that was automatically gener-
ated by our EHR-based live surveillance
system using the final algorithm.

CONCLUSIONSdThis work demon-
strates the feasibility and potential utility
of EHR data for automated diabetes sur-
veillance. Leveraging the full array of data
captured by EHRs, including laboratory
test results and prescriptions in addition
to diagnosis codes, increases both the
sensitivity and granularity of surveillance
compared with diagnosis codes alone.
Our integrated algorithm, including lab-
oratory, prescription, and ICD-9 criteria,
captured more patients with diabetes
than any one criterion alone; diagnosis
codes flagged 78% of the final population,
laboratory tests flagged 66%, and pre-
scriptions for insulin or oral hypoglyce-
mics (excluding metformin) flagged 46%.
A combination algorithm seeking patients
with a plurality of type 1 diagnosis codes
and suggestive prescriptions, diagnostic
laboratory test results (negative plasma
C-peptide or positive diabetes autoanti-
bodies), or prescriptions for urine acetone
test strips classifiedpatients as type 1 versus
type 2 reasonably well.

The application of these surveillance
algorithms to EHR data has the potential
to provide timely, clinically detailed in-
formation on large numbers of patients at
low marginal cost per patient. Further-
more, in contrast to claims-based surveil-
lance, EHR data streams can also provide
rich contextual data about patients, in-
cluding their demographics, clinical pa-
rameters (e.g., blood pressure, BMI,
hemoglobin A1c, and lipids), medica-
tions, patterns of care, and how things
are changing over time. EHR-based sur-
veillance systems capable of extracting,
analyzing, and reporting these indicators
to public health departments in almost
real time are emerging (1). EHRs are likely
to become increasingly important sources
for public health surveillance as more
practices adopt EHRs and vendors begin
to add functionality for public health sur-
veillance. The federal government’s
“meaningful use” incentives provide sub-
stantial financial encouragement for both
of these goals (10).
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type 2 diabetes despite their very different
demographics, risk factors, prevention
strategies, and management pathways.
The Canadian Community Health Survey
imputes diabetes type based on self-
reported age at diagnosis, pregnancy his-
tory, and medication usage (11). Some
U.S. states add an extra question on dia-
betes type to the Behavioral Risk Factor
Surveillance System (12). Both of these
classifications, however, depend upon
self-reports rather than clinical and labo-
ratory data. Vanderloo et al. (13)
proposed a claims-based classification
scheme for children based upon age, eth-
nicity, and medication history, but the age
and ethnicity criteria limit the generaliz-
ability of their algorithm for general pop-
ulation surveillance. Finally, some
research surveys, such as the SEARCH
for Diabetes in Youth, gather detailed

physiological data to help classify patients
as type 1 versus type 2 (14). This approach
provides invaluable insights but expense
and complexity preclude its use for rou-
tine public health operations. EHRs’ clin-
ically rich data and efficient coverage of
large populations constitute an additional,
attractive option to improve public health
capacity to routinely track type 1 and type
2 diabetes.

The persistent sources of error in our
algorithms provide a telling window into
the limitations of EHR data for public
health surveillance. Sources of error in-
cluded physician miscoding (type 2 di-
agnosis codes assigned to patients with
type 1 diabetes, diabetes diagnosis codes
used for screening rather than frank dis-
ease, and prescription for insulin pump
recorded as free text rather than as struc-
tured data), EHR miscoding (oral glucose

tolerance tests coded as fasting glucoses),
and algorithm programming errors (pre-
scription for “insulin syringe” incorrectly
parsed as prescription for insulin and fail-
ure to recognize some patients as pregnant,
leading to misclassification of gestational di-
abetes mellitus as frank diabetes).

Imperfections of EHR data also ac-
count for the large discrepancy in the
performance of the classification algo-
rithm in derivation versus validation.
Algorithm sensitivity dropped from
100% in derivation to 65% on validation.
This decrease was entirely attributable to
misclassification of a single case of type 1
diabetes as type 2 diabetes. The patient in
question was a 45-year-old woman with
type 1 diabetes since age 11. The EHR
data on record included 33 encounters
with ICD-9 codes for diabetes but 27 of
the 33 encounters were miscoded as type

Figure 1dScreenshot of the Electronic medical record Support for Public health (ESP) live EHR-based public health surveillance and reporting system.
The map depicts the prevalence of type 2 diabetes by zip code among Atrius Health patients in Eastern Massachusetts. The system automatically detects
diabetes and classifies patients as type 1 versus type 2 using data refreshed and analyzed nightly using the algorithms described in this article.
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2 diabetes. In theory, the algorithm could
still have classified her as type 1 since she
was prescribed urine acetone test strips
(as well as insulin and glucagon). These
prescriptions were not recorded in the
EHR prescription fields, however, be-
cause they were provided by an endocri-
nologist outside of our study practice.

The marked drop in sensitivity from a
single misclassification demonstrates the
challenge of electronic surveillance for
rare outcomes in large populations. The
raw sensitivity of our algorithm on chart
review appeared very good (35 of 36, 97%
[95% CI 87–100]), but correcting for the
sampling strategy multiplied the effect of
the missing case many-fold. Inverse prob-
ability sample weighting increased the es-
timate of missed type 1 cases by a factor
proportionate to the size of the type 2
population. The net population-weighted
sensitivity of the final algorithm for type 1
diabetes therefore dropped to 65% (36–
100).

In addition, this missed case high-
lights the ongoing risk of misclassification
in surveillance studies using EHR data
due tomiscoding and the balkanization of
patients’ data between different EHRs that
do not participate in data exchange. Two
factors, however, may mitigate these
sources of error over time. First, our live
EHR-based surveillance system reclassi-
fies patients anew every time fresh EHR
data are uploaded. It is possible that this
false-positive case may be reclassified cor-
rectly in the future if her EHR-affiliated
providers begin coding more accurately
or enter a suggestive prescription. Like-
wise, health information exchanges that
consolidate data from multiple EHR sys-
tems across a region may help diminish
missing data (15). A recent survey of U.S.
hospitals found that 10.7% currently ex-
change data with unaffiliated providers
(16). Current federal funding initiatives
for states to develop regional information
exchanges and meaningful use incentives
for clinicians to exchange data are likely to
encourage further growth of electronic in-
formation sharing between unaffiliated
organizations in years to come (17).

Limitations of our study include the
risk of incorrect reference classifications
and algorithm overtraining. Our refer-
ence standard classifications were made
using retrospective chart review data
rather than comprehensive physiological
studies. We attempted to optimize refer-
ence classifications by setting out a hier-
archy of classification rules that gave
greatestweight to endocrinologist diagnoses,

consistent laboratory studies, and sugges-
tive medication prescription histories
rather than accepting any diagnosis from
any clinician at face value. Nonetheless,
misclassifications could have occurred
due to endocrinologist error, false-positive
or -negative laboratory test results, incom-
plete clinical histories and prescription
records, or primary care physician errors.
Laboratory data in particular need to be
interpreted with caution; some type 1
patients, for example, can have negative
antibodies and others may have remnant
b-cell function reflected in detectable
C-peptide on standard clinical assays
(18). Fewer than 5% of our classifica-
tions, however,were baseduponC-peptide
or autoantibody measures. It would be
informative to validate and possibly re-
fine our suggested algorithm for type 1
versus type 2 diabetes using data from
studies with comprehensive physiologi-
cal measurements on all patients (al-
though even these studies sometimes
suffer from controversy regarding their
classification schemes). In addition, our
classification algorithm is heavily depen-
dent upon clinicians’ coding, testing,
and prescribing decisions. Even if the al-
gorithm is optimized using physiologi-
cal data as reference standard, there is
still a future risk of misclassifying pa-
tients if clinicians make incorrect diag-
noses and then code and prescribe
accordingly.

The algorithms in this study were
developed using data from a single EHR
serving a single practice. Algorithm per-
formancemay be different if implemented
in different settings with different clinical
practice and coding patterns (19). The al-
gorithm attempts to mitigate this risk by
allowing multiple criteria for type 1 di-
abetes, thereby increasing the probabil-
ity that local practice and coding styles
will still trigger the algorithm. The algo-
rithms need to be validated in new set-
tings, however, to test their robustness
and portability.

We created the algorithms in this
paper for EHR-based surveillance systems
but they may also be useful for the
analysis of claims-based datasets. Claims
data typically include many of the same
elements as EHRs, including diagnosis
codes, prescriptions, and laboratory tests,
but usually only indicate that a test was
performed, not the specific result.
A major advantage of claims datasets,
however, is that they include data on all
of each patient’s encounters, not just
those within a given practice. This feature

could mitigate the problem of missing
data due to patients seeking care from
multiple practices with unconnected
EHR systems. Many of the candidate al-
gorithms in Table 3 are suitable for appli-
cation to claims datasets already insofar as
they only include diagnosis codes and/or
medication prescriptions. In addition, we
assessed two potential adaptations of our
final algorithm suitable for claims data. In
the first adaptation, we retained the full
algorithm but simply looked to see
whether C-peptide and/or diabetes auto-
antibody tests were performed rather than
requiring a specific result. This preserved
sensitivity but lowered positive predictive
value for type 1 diabetes (100 and 79%,
respectively). In the second adaptation,
we removed the C-peptide and diabetes
autoantibody criteria altogether. This de-
creased sensitivity for type 1 diabetes but
preserved a high positive predictive value
(82 and 95%, respectively).

In sum, we demonstrate the utility of
EHR-based algorithms to detect and clas-
sify patients with diabetes. Integration of
these algorithms into EHR-based surveil-
lance systems could provide a rich re-
source for automated public health
surveillance, practice management, and
patient recruitment for clinical studies. In
addition, we identify current sources of
misclassification that limit algorithm per-
formance. Knowing these sources of error
could help practices and/or public health
agencies design strategies to improve data
quality and/or further refine our algo-
rithm to mitigate these errors. Further
work validating, enhancing, and applying
these algorithms to public health surveil-
lance systems is merited.
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